Browser-Based ML Inference Guide

Run machine learning models directly in the browser without server backends. This guide compares the major frameworks and tools available.

Complete Comparison Table

Tool Type Free? Best For Performance Setup Browser Support Mobile Ready
TensorFlow.js Inference Browser ML, real-time ⭐⭐⭐⭐ (WebGL) Medium All modern Partial
ONNX Runtime Web Inference High-perf inference ⭐⭐⭐⭐⭐ (WebGPU) Medium Chrome, Edge Limited
MediaPipe Detection Face/pose tracking ⭐⭐⭐⭐ Easy All modern ✓ Yes
Transformers.js NLP Text models ⭐⭐⭐ Easy All modern ✓ Yes
Whisper Web Audio Speech recognition ⭐⭐⭐ Medium Modern Limited
Runway ML General Freemium Creative ML ⭐⭐⭐⭐ Easy Web app ✓ Yes
ml.js Utilities Lightweight ML ⭐⭐⭐ Easy All modern ✓ Yes
OpenCV.js Vision Computer vision ⭐⭐⭐⭐ Hard All modern Limited

Detailed Breakdowns

1. TensorFlow.js

Free Open Source JavaScript Library

Machine learning library for JavaScript that runs in the browser and on Node.js. Essential for real-time ML applications.

Key Features:

Relevant to Your Work:

→ TensorFlow.js Docs → GitHub


2. ONNX Runtime Web

Free Open Source JavaScript Library

High-performance runtime for ONNX models in the browser with WebGPU support for next-gen performance.

Advantages:

Performance Metrics:

→ Official Site


3. MediaPipe

Free Open Source Multi-Platform

Google’s framework for building multimodal machine learning pipelines. Excellent for face tracking, pose detection, and hand tracking.

Core Solutions (Relevant to Avatar Work):

Use Cases:

Performance:

→ Official Site


4. Transformers.js

Free Open Source JavaScript Library

State-of-the-art NLP models run directly in the browser. Perfect for text processing without server calls.

Available Models:

→ GitHub


5. OpenCV.js

Free Open Source JavaScript Binding

JavaScript binding of OpenCV for computer vision tasks in the browser.

Capabilities:

→ Official Docs


Performance Comparison by Task

Face Tracking (Desktop)

Framework FPS Latency Quality
MediaPipe Face Mesh 30+ 30-50ms ⭐⭐⭐⭐
TensorFlow.js 25-30 40-60ms ⭐⭐⭐
Custom ONNX 30+ 20-40ms ⭐⭐⭐⭐⭐

Model Inference (WebGL vs WebGPU)

Model WebGL WebGPU CPU
ResNet50 77-225ms 20-40ms 500-800ms
MobileNet 30-50ms 10-20ms 100-150ms
BERT 1000-2000ms 200-500ms 5000-10000ms

Mobile Performance (Browser)

Framework iOS Android Notes
MediaPipe 6-7 FPS 15-25 FPS Face tracking
TensorFlow.js 5-10 FPS 15-20 FPS Model dependent
OpenCV.js Limited 10-15 FPS Limited support

Choosing the Right Tool

START: I want to run ML in my browser

├─ Do you need face/pose tracking?
│  ├─ YES → Use MediaPipe
│  └─ NO → Continue
│
├─ Do you need maximum performance?
│  ├─ YES → Use ONNX Runtime Web (WebGPU)
│  └─ NO → Continue
│
├─ Do you need NLP capabilities?
│  ├─ YES → Use Transformers.js
│  └─ NO → Continue
│
├─ Do you have a model to convert?
│  ├─ TensorFlow/PyTorch → Use TensorFlow.js
│  ├─ ONNX format → Use ONNX Runtime Web
│  └─ Other → Research model conversion first
│
└─ For general CV: Use OpenCV.js

Implementation Tips

For Real-Time Performance:

  1. Use quantized models (INT8/FP16)
  2. Leverage GPU acceleration (WebGL/WebGPU)
  3. Cache model loads
  4. Use Web Workers for inference to avoid blocking UI

For Model Conversion:

For Production Deployment:


Ready to build? Schedule a consultation or email me